這都要歸功于16世紀一個叫Zacharias Jansen的荷蘭人 ▲玩出來的顯微鏡 很奇怪 然而,顯微鏡真正發(fā)展成為一個學(xué)科,成為窺視微觀世界的獨門兵器,還是要等到17世紀六、七十年代。列文虎克,這個出生于1632年的荷蘭小伙子,在稚嫩的年紀就不得不面對父親的去世,被迫來到阿姆斯特丹的一家干貨商店當(dāng)學(xué)徒,在那里他接觸到放大鏡,產(chǎn)生極大的興趣 與列文虎克同期的 ▲光學(xué)顯微鏡 燈泡的發(fā)明讓那些狂熱的顯微鏡粉絲們欣喜不已 顯微鏡的變革 再后來 ▲瓶頸所在 十八世紀 光在傳播途徑中,如果碰到的障礙物或者小孔的尺寸遠大于光的波長時 ▲新時代的驕子 當(dāng)人們意識到用光學(xué)顯微鏡看不到原子般細微的物質(zhì) 1924年,德布羅意提出了波粒二象性的假說 電子顯微鏡有著與光學(xué)顯微鏡相似的成像原理,它的神奇之處在于用電子束代替光源,而電磁場也化身成了透鏡:高速的電子束在真空通道中穿越聚光鏡再透過樣品,帶著樣品內(nèi)部的結(jié)構(gòu)信息投射在熒光屏板上,zui終轉(zhuǎn)化成可見光影像。另外,由于電子束的穿透力很弱,用于電子顯微鏡的標本,需要用超薄切片機制成厚50納米左右的超薄切片,稍微厚一點,電子就可能做無用功。如果給飛奔的電子再來一馬鞭,電子顯微鏡的放大倍數(shù)zui高可達近百萬倍,分辨率可以達到納米級(10-9 m)。 用電子束代替光看起來已經(jīng)是一個反常規(guī)的奇妙主意,但讓人想不到的還在后面。1983年,IBM公司蘇黎世實驗室的兩位科學(xué)家格爾德•賓寧和海因里希•羅雷爾,發(fā)明了掃描隧道顯微鏡 zui神奇的是,掃描隧道顯微鏡沒有鏡頭!沒有鏡頭也敢叫“顯微鏡”?沒錯 電子顯微鏡的出現(xiàn),“神馬”細菌、病毒、DNA、蛋白質(zhì)大分子、原子核、電子云啥的,都得規(guī)規(guī)矩矩老實聽話,要不,來探針下現(xiàn)個原形? ▲未知的微觀世界 對人來說,安全電壓是36 V,可是對于電子顯微鏡下的觀測樣品,其接收到的輻射劑量等同于10萬噸當(dāng)量的氫彈在30米遠處爆炸的輻射量!當(dāng)生物標本暴露于電子束中時,細胞結(jié)構(gòu)和化學(xué)鍵將迅速崩潰,所以電子顯微鏡雖然精妙卻無法用于活細胞的觀察。 麻省理工大學(xué)Mehmet教授的研究小組提出,通過使用量子力學(xué)的測量技術(shù)可以讓電子束被約束起來,在稍遠的距離感應(yīng)被觀察的物體,一次掃描樣品的一個像素,并將這些像素組合起來拼出整個樣品的圖像,從而避免損壞實驗樣品。倘若研究成功,它可以使研究人員看到分子在活體細胞內(nèi)的活動,比如酶在活細胞中的功能或是DNA的復(fù)制過程,用以揭示生命和物質(zhì)的基本問題。 看電影,你一定希望看到3D的畫面。同樣的,長期的2D顯微鏡成像,也讓人們感到審美疲勞 同時,隨著數(shù)碼攝影技術(shù)、信息技術(shù)和自動化技術(shù)的革新,顯微鏡的外觀、舒適性、自動化程度以及方便性都在提高。例如近幾年的大屏幕倒置顯微鏡,直接通過液晶顯示器來觀察,研究細胞結(jié)構(gòu)就像在電腦上看電影,大大減輕了顯微鏡觀察時的疲勞。
掃碼加微信
移動端瀏覽